Mechanism of Cellular Oxidation Stress Induced by Asymmetric Dimethylarginine

نویسندگان

  • Srinidi Mohan
  • Ho-Leung Fung
چکیده

The mechanism by which asymmetric dimethylarginine (ADMA) induces vascular oxidative stress is not well understood. In this study, we utilized human umbilical vein endothelial cells (HUVEC) to examine the roles of ADMA cellular transport and the uncoupling of endothelial nitric oxide synthase (eNOS) in contributing to this phenomenon. Dihydroethidium (DHE) fluorescence was used as an index of oxidative stress. Whole cells and their isolated membrane fractions exhibited measureable increased DHE fluorescence at ADMA concentrations greater than 10 μM. ADMA-induced DHE fluorescence was inhibited by co-incubation with L-lysine, tetrahydrobiopterin (BH(4)), or L-nitroarginine methyl ester (L-NAME). Oxidative stress induced in these cells by angiotensin II (Ang II) were unaffected by the same concentrations of L-lysine, L-NAME and BH(4). ADMA-induced reduction in cellular nitrite or nitrite/nitrate production was reversed in the presence of increasing concentrations of BH(4). These results suggest that ADMA-induced DHE fluorescence involves the participation of both the cationic transport system in the cellular membrane and eNOS instead of the Ang II-NADPH oxidase pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lysophosphatidylcholine-induced elevation of asymmetric dimethylarginine level by the NADPH oxidase pathway in endothelial cells.

Recent studies suggested that endothelium is a main source of reactive oxygen species (ROS) and the major source was via NADPH oxidase pathway. Various stimuli including lysophosphatidylcholine (LPC), a major component of oxidized low-density lipoprotein (ox-LDL), can enhance the activity of NADPH oxidase and lead to a marked ROS generation. Asymmetric dimethylarginine (ADMA) is an endogenous n...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

The Study of Serum Asymmetric Dimethylarginine Concentrations in the Different Paraoxonase Phenotypes of Exudative Age-related Macular Degeneration Disease

Background and Aims: Age-related macular degeneration (ARMD) is a degenerative retinal disorder that causes progressive loss of central vision in older adults. The study aimed to determine the effect of asymmetric dimethylarginine (ADMA) as oxidizing metabolite and paraoxonase (PON1) activity within its phenotypes as an antioxidant agent in the development of such multifactorial disease. Mater...

متن کامل

Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables.

Plasma levels of asymmetric dimethylarginine or markers of reactive oxygen species are increased in subjects with risk factors for cardiovascular disease or chronic kidney disease. We tested the hypothesis that reactive oxygen species generate cellular asymmetric dimethylarginine that together cause endothelial dysfunction that underlies the risk of subsequent disease. Rat preglomerular vascula...

متن کامل

An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes.

OBJECTIVES We sought to determine whether asymmetric dimethylarginine (ADMA) inhibits nitric oxide (NO) elaboration in cultured human endothelial cells and whether this is associated with the activation of oxidant-sensitive signaling mediating endothelial adhesiveness for monocytes. BACKGROUND Endothelial NO elaboration is impaired in hypercholesterolemia and atherosclerosis, which may be due...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012